

Overview

ckanext.importer provides utilities for easily importing metadata
from an external data source into CKAN and keeping the CKAN metadata
up-to-date when the contents of the data source is modified.

To achieve this, each entity (package, resource, view) in CKAN is linked
to its counterpart in the original data source via an external ID
(EID), for example the entity’s ID in the data source.

As an example, let’s create a package with a resource:

from ckanext.importer import Importer

imp = Importer('my-importer-id')

with imp.sync_package('my-package-eid') as pkg:
 # If no package with the given EID exists then it is
 # automatically created. Otherwise the existing package
 # is retrieved.

 # The package can be modified like a dict
 pkg['title'] = 'My Package Title'

 # For package extras there's the special `.extras` attribute
 # which provides a dict-interface:
 pkg.extras['my-extra-key'] = 'my-extra-value'

 with pkg.sync_resource('my-resource-eid') as res:
 # Just like packages, resources are automatically created
 # and retrieved based on their EID.
 res['name'] = 'My Resource Name'

 # Once the `sync_resource` context manager exists, the
 # created/updated resource is automatically uploaded to CKAN.

Once the `sync_package` context manager exists, the created/updated
package is automatically uploaded to CKAN.

For more details on how to use ckanext.importer please refer to Usage.

Installation

ckanext.importer uses the usual installation routine for CKAN extensions:

	Activate your CKAN virtualenv:

cd /usr/lib/ckan/default
source bin/activate

	Install ckanext.importer and its dependencies:

pip install -e git+https://github.com/stadt-karlsruhe/ckanext-importer#egg=ckanext-importer
pip install -r src/ckanext-importer/requirements.txt

On a production system you’ll probably want to pin a certain release version [https://github.com/stadt-karlsruhe/ckanext-importer/releases] of ckanext.importer instead:

pip install -e git+https://github.com/stadt-karlsruhe/ckanext-importer@v0.1.0#egg=ckanext-importer

	Restart CKAN. For example, if you’re using Apache,

sudo service apache2 restart

Usage

ckanext.importer provides utilities to write Python code for importing
and synchronizing CKAN metadata from an external data source.

Note

At this point in time, ckanext.importer does not provide a web
UI or any command line tools.

The starting point for using ckanext.importer is an
Importer. Each Importer instance corresponds to
a separate data source and is identified using an ID that can be freely
chosen (but must be unique among all importers used on the target CKAN
instance):

from ckanext.importer import Importer

imp = Importer('my-importer-id')

Once you have created an importer, you use its
sync_package() method to create/update the CKAN
metadata for a dataset. The CKAN package is linked to your external
dataset using an external ID (EID). ckanext.importer automatically
stores the EID along with the other package metadata inside CKAN. Like
the importer ID, the package’s EID can be chosen freely, but must be
unique among all packages for this importer.

with imp.sync_package(eid='my-package-eid') as pkg:
 # ckanext.importer has automatically checked whether a
 # package for this importer ID and package EID already
 # exists and -- if that is the case -- retrieved it.
 # Otherwise, a suitable package has been automatically
 # created for you.

 # Use the package's dict-interface to insert/update the
 # metadata from your data source. For example:
 pkg['title'] = 'My Package Title'

Once the context manager exits, the modified package is
automatically uploaded to CKAN.

Typically, you don’t have only one dataset, but an external data source
(for example a database) containing many datasets to be imported:

for external_dataset in external_datasource:
 with imp.sync_package(eid=external_dataset.id) as pkg:
 pkg['title'] = external_dataset.name

Synchronizing a package’s resources works pretty much the same: the
object returned by sync_package() is an instance
of Package and provides a sync_resource()
method:

with imp.sync_package(eid='my-package-eid') as pkg:
 pkg['title'] = 'My Package Title'

 with pkg.sync_resource(eid='my-resource-eid') as res:
 res['name'] = 'My Resource Name'
 res['url'] = 'https://some-resource-url'

Resource EIDs need to be unique among all resources of the same package.

Finally, the same mechanism can be used to synchronize resource views
via the Resource.sync_view() method (which returns a
View instance):

with pkg.sync_resource(eid='my-resource-eid') as res:
 res['name'] = 'My Resource Name'
 res['url'] = 'https://some-resource-url'

 with res.sync_view(eid='my-view-eid') as view:
 view['view_type'] = 'text_view'
 view['title'] = 'My View Title'

See the API Reference for more information.

License

Copyright © 2018, Stadt Karlsruhe [https://www.karlsruhe.de].

Distributed under the GNU Affero General Public License. See the file
LICENSE [https://github.com/stadt-karlsruhe/ckanext-importer/blob/master/LICENSE] for details.

Changelog

See the file CHANGELOG.md [https://github.com/stadt-karlsruhe/ckanext-importer/blob/master/CHANGELOG.md].

API Reference

Index

 nav.xhtml

 Table of Contents

 		
 Overview

_static/minus.png

_static/comment-bright.png

_static/plus.png

_static/ajax-loader.gif

_static/file.png

_static/up.png

_static/up-pressed.png

_static/down-pressed.png

_static/comment-close.png

_static/comment.png

_static/down.png

